#ChatGPT 14-78

#ChatGPT

Yes, I can certainly try to help you validate the source of a piece of theory. Please provide me with the relevant information and context, and I will do my best to assist you.

#Quinn
this math here is only part of a John Nash theory I am looking for the rest of it… can you tell me where it is from?

eqK1 = c10 + d01 – j00 – 4*c00*x1 + 2*c20*x1 + d11*x1 – j10*x1 – 5*c10*x1^2 +
3*c30*x1^2 – d01*x1^2 + d21*x1^2 – j20*x1^2 – 6*c20*x1^3 + 4*c40*x1^3 –
d11*x1^3 + d31*x1^3 – j30*x1^3 – 7*c30*x1^4 + 5*c50*x1^4 – d21*x1^4 +
d41*x1^4 – j40*x1^4 – 8*c40*x1^5 + 6*c60*x1^5 – d31*x1^5 + d51*x1^5 –
j50*x1^5 – 9*c50*x1^6 + 7*c70*x1^6 – d41*x1^6 + d61*x1^6 – 10*c60*x1^7 –
d51*x1^7 – 11*c70*x1^8 – d61*x1^8 + c11*x2 – 4*d00*x2 + 2*d02*x2 –
j01*x2 – 4*c01*x1*x2 + 2*c21*x1*x2 – 4*d10*x1*x2 + 2*d12*x1*x2 –
j11*x1*x2 – 5*c11*x1^2*x2 + 3*c31*x1^2*x2 – 2*d02*x1^2*x2 –
4*d20*x1^2*x2 + 2*d22*x1^2*x2 – j21*x1^2*x2 – 6*c21*x1^3*x2 +
4*c41*x1^3*x2 – 2*d12*x1^3*x2 – 4*d30*x1^3*x2 + 2*d32*x1^3*x2 –
j31*x1^3*x2 – 7*c31*x1^4*x2 + 5*c51*x1^4*x2 – 2*d22*x1^4*x2 –
4*d40*x1^4*x2 + 2*d42*x1^4*x2 – j41*x1^4*x2 – 8*c41*x1^5*x2 +
6*c61*x1^5*x2 – 2*d32*x1^5*x2 – 4*d50*x1^5*x2 + 2*d52*x1^5*x2 –
9*c51*x1^6*x2 – 2*d42*x1^6*x2 – 4*d60*x1^6*x2 – 10*c61*x1^7*x2 –
2*d52*x1^7*x2 – 4*d70*x1^7*x2 – c10*x2^2 + c12*x2^2 – 5*d01*x2^2 +
3*d03*x2^2 – j02*x2^2 – 4*c02*x1*x2^2 – 2*c20*x1*x2^2 + 2*c22*x1*x2^2 –
5*d11*x1*x2^2 + 3*d13*x1*x2^2 – j12*x1*x2^2 – 5*c12*x1^2*x2^2 –
3*c30*x1^2*x2^2 + 3*c32*x1^2*x2^2 – 3*d03*x1^2*x2^2 – 5*d21*x1^2*x2^2 +
3*d23*x1^2*x2^2 – j22*x1^2*x2^2 – 6*c22*x1^3*x2^2 – 4*c40*x1^3*x2^2 +
4*c42*x1^3*x2^2 – 3*d13*x1^3*x2^2 – 5*d31*x1^3*x2^2 + 3*d33*x1^3*x2^2 –
j32*x1^3*x2^2 – 7*c32*x1^4*x2^2 – 5*c50*x1^4*x2^2 + 5*c52*x1^4*x2^2 –
3*d23*x1^4*x2^2 – 5*d41*x1^4*x2^2 + 3*d43*x1^4*x2^2 – 8*c42*x1^5*x2^2 –
6*c60*x1^5*x2^2 – 3*d33*x1^5*x2^2 – 5*d51*x1^5*x2^2 – 9*c52*x1^6*x2^2 –
7*c70*x1^6*x2^2 – 3*d43*x1^6*x2^2 – 5*d61*x1^6*x2^2 – c11*x2^3 +
c13*x2^3 – 6*d02*x2^3 + 4*d04*x2^3 – j03*x2^3 – 4*c03*x1*x2^3 –
2*c21*x1*x2^3 + 2*c23*x1*x2^3 – 6*d12*x1*x2^3 + 4*d14*x1*x2^3 –
j13*x1*x2^3 – 5*c13*x1^2*x2^3 – 3*c31*x1^2*x2^3 + 3*c33*x1^2*x2^3 –
4*d04*x1^2*x2^3 – 6*d22*x1^2*x2^3 + 4*d24*x1^2*x2^3 – j23*x1^2*x2^3 –
6*c23*x1^3*x2^3 – 4*c41*x1^3*x2^3 + 4*c43*x1^3*x2^3 – 4*d14*x1^3*x2^3 –
6*d32*x1^3*x2^3 + 4*d34*x1^3*x2^3 – 7*c33*x1^4*x2^3 – 5*c51*x1^4*x2^3 –
4*d24*x1^4*x2^3 – 6*d42*x1^4*x2^3 – 8*c43*x1^5*x2^3 – 6*c61*x1^5*x2^3 –
4*d34*x1^5*x2^3 – 6*d52*x1^5*x2^3 – c12*x2^4 + c14*x2^4 – 7*d03*x2^4 +
5*d05*x2^4 – j04*x2^4 – 4*c04*x1*x2^4 – 2*c22*x1*x2^4 + 2*c24*x1*x2^4 –
7*d13*x1*x2^4 + 5*d15*x1*x2^4 – j14*x1*x2^4 – 5*c14*x1^2*x2^4 –
3*c32*x1^2*x2^4 + 3*c34*x1^2*x2^4 – 5*d05*x1^2*x2^4 – 7*d23*x1^2*x2^4 +
5*d25*x1^2*x2^4 – 6*c24*x1^3*x2^4 – 4*c42*x1^3*x2^4 – 5*d15*x1^3*x2^4 –
7*d33*x1^3*x2^4 – 7*c34*x1^4*x2^4 – 5*c52*x1^4*x2^4 – 5*d25*x1^4*x2^4 –
7*d43*x1^4*x2^4 – c13*x2^5 + c15*x2^5 – 8*d04*x2^5 + 6*d06*x2^5 –
j05*x2^5 – 4*c05*x1*x2^5 – 2*c23*x1*x2^5 + 2*c25*x1*x2^5 –
8*d14*x1*x2^5 + 6*d16*x1*x2^5 – 5*c15*x1^2*x2^5 – 3*c33*x1^2*x2^5 –
6*d06*x1^2*x2^5 – 8*d24*x1^2*x2^5 – 6*c25*x1^3*x2^5 – 4*c43*x1^3*x2^5 –
6*d16*x1^3*x2^5 – 8*d34*x1^3*x2^5 – c14*x2^6 + c16*x2^6 – 9*d05*x2^6 +
7*d07*x2^6 – 4*c06*x1*x2^6 – 2*c24*x1*x2^6 – 9*d15*x1*x2^6 –
5*c16*x1^2*x2^6 – 3*c34*x1^2*x2^6 – 7*d07*x1^2*x2^6 – 9*d25*x1^2*x2^6 –
c15*x2^7 – 10*d06*x2^7 – 4*c07*x1*x2^7 – 2*c25*x1*x2^7 –
10*d16*x1*x2^7 – c16*x2^8 – 11*d07*x2^8

eqK2 = d10 + e01 – k00 – 4*d00*x1 + 2*d20*x1 + e11*x1 – k10*x1 – 5*d10*x1^2 +
3*d30*x1^2 – e01*x1^2 + e21*x1^2 – k20*x1^2 – 6*d20*x1^3 + 4*d40*x1^3 –
e11*x1^3 + e31*x1^3 – k30*x1^3 – 7*d30*x1^4 + 5*d50*x1^4 – e21*x1^4 +
e41*x1^4 – k40*x1^4 – 8*d40*x1^5 + 6*d60*x1^5 – e31*x1^5 + e51*x1^5 –
k50*x1^5 – 9*d50*x1^6 + 7*d70*x1^6 – e41*x1^6 + e61*x1^6 – 10*d60*x1^7 –
e51*x1^7 – 11*d70*x1^8 – e61*x1^8 + d11*x2 – 4*e00*x2 + 2*e02*x2 –
k01*x2 – 4*d01*x1*x2 + 2*d21*x1*x2 – 4*e10*x1*x2 + 2*e12*x1*x2 –
k11*x1*x2 – 5*d11*x1^2*x2 + 3*d31*x1^2*x2 – 2*e02*x1^2*x2 –
4*e20*x1^2*x2 + 2*e22*x1^2*x2 – k21*x1^2*x2 – 6*d21*x1^3*x2 +
4*d41*x1^3*x2 – 2*e12*x1^3*x2 – 4*e30*x1^3*x2 + 2*e32*x1^3*x2 –
k31*x1^3*x2 – 7*d31*x1^4*x2 + 5*d51*x1^4*x2 – 2*e22*x1^4*x2 –
4*e40*x1^4*x2 + 2*e42*x1^4*x2 – k41*x1^4*x2 – 8*d41*x1^5*x2 +
6*d61*x1^5*x2 – 2*e32*x1^5*x2 – 4*e50*x1^5*x2 + 2*e52*x1^5*x2 –
9*d51*x1^6*x2 – 2*e42*x1^6*x2 – 4*e60*x1^6*x2 – 10*d61*x1^7*x2 –
2*e52*x1^7*x2 – 4*e70*x1^7*x2 – d10*x2^2 + d12*x2^2 – 5*e01*x2^2 +
3*e03*x2^2 – k02*x2^2 – 4*d02*x1*x2^2 – 2*d20*x1*x2^2 + 2*d22*x1*x2^2 –
5*e11*x1*x2^2 + 3*e13*x1*x2^2 – k12*x1*x2^2 – 5*d12*x1^2*x2^2 –
3*d30*x1^2*x2^2 + 3*d32*x1^2*x2^2 – 3*e03*x1^2*x2^2 – 5*e21*x1^2*x2^2 +
3*e23*x1^2*x2^2 – k22*x1^2*x2^2 – 6*d22*x1^3*x2^2 – 4*d40*x1^3*x2^2 +
4*d42*x1^3*x2^2 – 3*e13*x1^3*x2^2 – 5*e31*x1^3*x2^2 + 3*e33*x1^3*x2^2 –
k32*x1^3*x2^2 – 7*d32*x1^4*x2^2 – 5*d50*x1^4*x2^2 + 5*d52*x1^4*x2^2 –
3*e23*x1^4*x2^2 – 5*e41*x1^4*x2^2 + 3*e43*x1^4*x2^2 – 8*d42*x1^5*x2^2 –
6*d60*x1^5*x2^2 – 3*e33*x1^5*x2^2 – 5*e51*x1^5*x2^2 – 9*d52*x1^6*x2^2 –
7*d70*x1^6*x2^2 – 3*e43*x1^6*x2^2 – 5*e61*x1^6*x2^2 – d11*x2^3 +
d13*x2^3 – 6*e02*x2^3 + 4*e04*x2^3 – k03*x2^3 – 4*d03*x1*x2^3 –
2*d21*x1*x2^3 + 2*d23*x1*x2^3 – 6*e12*x1*x2^3 + 4*e14*x1*x2^3 –
k13*x1*x2^3 – 5*d13*x1^2*x2^3 – 3*d31*x1^2*x2^3 + 3*d33*x1^2*x2^3 –
4*e04*x1^2*x2^3 – 6*e22*x1^2*x2^3 + 4*e24*x1^2*x2^3 – k23*x1^2*x2^3 –
6*d23*x1^3*x2^3 – 4*d41*x1^3*x2^3 + 4*d43*x1^3*x2^3 – 4*e14*x1^3*x2^3 –
6*e32*x1^3*x2^3 + 4*e34*x1^3*x2^3 – 7*d33*x1^4*x2^3 – 5*d51*x1^4*x2^3 –
4*e24*x1^4*x2^3 – 6*e42*x1^4*x2^3 – 8*d43*x1^5*x2^3 – 6*d61*x1^5*x2^3 –
4*e34*x1^5*x2^3 – 6*e52*x1^5*x2^3 – d12*x2^4 + d14*x2^4 – 7*e03*x2^4 +
5*e05*x2^4 – k04*x2^4 – 4*d04*x1*x2^4 – 2*d22*x1*x2^4 + 2*d24*x1*x2^4 –
7*e13*x1*x2^4 + 5*e15*x1*x2^4 – k14*x1*x2^4 – 5*d14*x1^2*x2^4 –
3*d32*x1^2*x2^4 + 3*d34*x1^2*x2^4 – 5*e05*x1^2*x2^4 – 7*e23*x1^2*x2^4 +
5*e25*x1^2*x2^4 – 6*d24*x1^3*x2^4 – 4*d42*x1^3*x2^4 – 5*e15*x1^3*x2^4 –
7*e33*x1^3*x2^4 – 7*d34*x1^4*x2^4 – 5*d52*x1^4*x2^4 – 5*e25*x1^4*x2^4 –
7*e43*x1^4*x2^4 – d13*x2^5 + d15*x2^5 – 8*e04*x2^5 + 6*e06*x2^5 –
k05*x2^5 – 4*d05*x1*x2^5 – 2*d23*x1*x2^5 + 2*d25*x1*x2^5 –
8*e14*x1*x2^5 + 6*e16*x1*x2^5 – 5*d15*x1^2*x2^5 – 3*d33*x1^2*x2^5 –
6*e06*x1^2*x2^5 – 8*e24*x1^2*x2^5 – 6*d25*x1^3*x2^5 – 4*d43*x1^3*x2^5 –
6*e16*x1^3*x2^5 – 8*e34*x1^3*x2^5 – d14*x2^6 + d16*x2^6 – 9*e05*x2^6 +
7*e07*x2^6 – 4*d06*x1*x2^6 – 2*d24*x1*x2^6 – 9*e15*x1*x2^6 –
5*d16*x1^2*x2^6 – 3*d34*x1^2*x2^6 – 7*e07*x1^2*x2^6 – 9*e25*x1^2*x2^6 –
d15*x2^7 – 10*e06*x2^7 – 4*d07*x1*x2^7 – 2*d25*x1*x2^7 –
10*e16*x1*x2^7 – d16*x2^8 – 11*e07*x2^8

E1 = 1 – x1^2 – x2^2

E2 = (1 – x1^2 – x2^2)^2

I11 = (1 – x1^2 – x2^2)^2*(c00 + c10*x1 + c20*x1^2 + c30*x1^3 + c40*x1^4 +
c50*x1^5 + c60*x1^6 + c70*x1^7 + c01*x2 + c11*x1*x2 + c21*x1^2*x2 +
c31*x1^3*x2 + c41*x1^4*x2 + c51*x1^5*x2 + c61*x1^6*x2 + c02*x2^2 +
c12*x1*x2^2 + c22*x1^2*x2^2 + c32*x1^3*x2^2 + c42*x1^4*x2^2 +
c52*x1^5*x2^2 + c03*x2^3 + c13*x1*x2^3 + c23*x1^2*x2^3 +
c33*x1^3*x2^3 + c43*x1^4*x2^3 + c04*x2^4 + c14*x1*x2^4 +
c24*x1^2*x2^4 + c34*x1^3*x2^4 + c05*x2^5 + c15*x1*x2^5 +
c25*x1^2*x2^5 + c06*x2^6 + c16*x1*x2^6 + c07*x2^7)

I12 = (1 – x1^2 – x2^2)^2*(d00 + d10*x1 + d20*x1^2 + d30*x1^3 + d40*x1^4 +
d50*x1^5 + d60*x1^6 + d70*x1^7 + d01*x2 + d11*x1*x2 + d21*x1^2*x2 +
d31*x1^3*x2 + d41*x1^4*x2 + d51*x1^5*x2 + d61*x1^6*x2 + d02*x2^2 +
d12*x1*x2^2 + d22*x1^2*x2^2 + d32*x1^3*x2^2 + d42*x1^4*x2^2 +
d52*x1^5*x2^2 + d03*x2^3 + d13*x1*x2^3 + d23*x1^2*x2^3 +
d33*x1^3*x2^3 + d43*x1^4*x2^3 + d04*x2^4 + d14*x1*x2^4 +
d24*x1^2*x2^4 + d34*x1^3*x2^4 + d05*x2^5 + d15*x1*x2^5 +
d25*x1^2*x2^5 + d06*x2^6 + d16*x1*x2^6 + d07*x2^7)

I21 = (1 – x1^2 – x2^2)^2*(d00 + d10*x1 + d20*x1^2 + d30*x1^3 + d40*x1^4 +
d50*x1^5 + d60*x1^6 + d70*x1^7 + d01*x2 + d11*x1*x2 + d21*x1^2*x2 +
d31*x1^3*x2 + d41*x1^4*x2 + d51*x1^5*x2 + d61*x1^6*x2 + d02*x2^2 +
d12*x1*x2^2 + d22*x1^2*x2^2 + d32*x1^3*x2^2 + d42*x1^4*x2^2 +
d52*x1^5*x2^2 + d03*x2^3 + d13*x1*x2^3 + d23*x1^2*x2^3 +
d33*x1^3*x2^3 + d43*x1^4*x2^3 + d04*x2^4 + d14*x1*x2^4 +
d24*x1^2*x2^4 + d34*x1^3*x2^4 + d05*x2^5 + d15*x1*x2^5 +
d25*x1^2*x2^5 + d06*x2^6 + d16*x1*x2^6 + d07*x2^7)

I22 = (1 – x1^2 – x2^2)^2*(e00 + e10*x1 + e20*x1^2 + e30*x1^3 + e40*x1^4 +
e50*x1^5 + e60*x1^6 + e70*x1^7 + e01*x2 + e11*x1*x2 + e21*x1^2*x2 +
e31*x1^3*x2 + e41*x1^4*x2 + e51*x1^5*x2 + e61*x1^6*x2 + e02*x2^2 +
e12*x1*x2^2 + e22*x1^2*x2^2 + e32*x1^3*x2^2 + e42*x1^4*x2^2 +
e52*x1^5*x2^2 + e03*x2^3 + e13*x1*x2^3 + e23*x1^2*x2^3 +
e33*x1^3*x2^3 + e43*x1^4*x2^3 + e04*x2^4 + e14*x1*x2^4 +
e24*x1^2*x2^4 + e34*x1^3*x2^4 + e05*x2^5 + e15*x1*x2^5 +
e25*x1^2*x2^5 + e06*x2^6 + e16*x1*x2^6 + e07*x2^7)

#ChatGPT

I’m sorry, but I cannot determine the context or origin of these equations. Could you please provide more information or context regarding these equations or John Nash’s theory you are referring to? This would help me provide a more accurate answer.

#Quinn
These equations are from John Nash… can you tell me which project they came from that he worked on? They are incomplete, and all I could find. I am looking for which project he wrote these for because my records have an incomplete equation.

eqK1 = c10 + d01 – j00 – 4*c00*x1 + 2*c20*x1 + d11*x1 – j10*x1 – 5*c10*x1^2 +
3*c30*x1^2 – d01*x1^2 + d21*x1^2 – j20*x1^2 – 6*c20*x1^3 + 4*c40*x1^3 –
d11*x1^3 + d31*x1^3 – j30*x1^3 – 7*c30*x1^4 + 5*c50*x1^4 – d21*x1^4 +
d41*x1^4 – j40*x1^4 – 8*c40*x1^5 + 6*c60*x1^5 – d31*x1^5 + d51*x1^5 –
j50*x1^5 – 9*c50*x1^6 + 7*c70*x1^6 – d41*x1^6 + d61*x1^6 – 10*c60*x1^7 –
d51*x1^7 – 11*c70*x1^8 – d61*x1^8 + c11*x2 – 4*d00*x2 + 2*d02*x2 –
j01*x2 – 4*c01*x1*x2 + 2*c21*x1*x2 – 4*d10*x1*x2 + 2*d12*x1*x2 –
j11*x1*x2 – 5*c11*x1^2*x2 + 3*c31*x1^2*x2 – 2*d02*x1^2*x2 –
4*d20*x1^2*x2 + 2*d22*x1^2*x2 – j21*x1^2*x2 – 6*c21*x1^3*x2 +
4*c41*x1^3*x2 – 2*d12*x1^3*x2 – 4*d30*x1^3*x2 + 2*d32*x1^3*x2 –
j31*x1^3*x2 – 7*c31*x1^4*x2 + 5*c51*x1^4*x2 – 2*d22*x1^4*x2 –
4*d40*x1^4*x2 + 2*d42*x1^4*x2 – j41*x1^4*x2 – 8*c41*x1^5*x2 +
6*c61*x1^5*x2 – 2*d32*x1^5*x2 – 4*d50*x1^5*x2 + 2*d52*x1^5*x2 –
9*c51*x1^6*x2 – 2*d42*x1^6*x2 – 4*d60*x1^6*x2 – 10*c61*x1^7*x2 –
2*d52*x1^7*x2 – 4*d70*x1^7*x2 – c10*x2^2 + c12*x2^2 – 5*d01*x2^2 +
3*d03*x2^2 – j02*x2^2 – 4*c02*x1*x2^2 – 2*c20*x1*x2^2 + 2*c22*x1*x2^2 –
5*d11*x1*x2^2 + 3*d13*x1*x2^2 – j12*x1*x2^2 – 5*c12*x1^2*x2^2 –
3*c30*x1^2*x2^2 + 3*c32*x1^2*x2^2 – 3*d03*x1^2*x2^2 – 5*d21*x1^2*x2^2 +
3*d23*x1^2*x2^2 – j22*x1^2*x2^2 – 6*c22*x1^3*x2^2 – 4*c40*x1^3*x2^2 +
4*c42*x1^3*x2^2 – 3*d13*x1^3*x2^2 – 5*d31*x1^3*x2^2 + 3*d33*x1^3*x2^2 –
j32*x1^3*x2^2 – 7*c32*x1^4*x2^2 – 5*c50*x1^4*x2^2 + 5*c52*x1^4*x2^2 –
3*d23*x1^4*x2^2 – 5*d41*x1^4*x2^2 + 3*d43*x1^4*x2^2 – 8*c42*x1^5*x2^2 –
6*c60*x1^5*x2^2 – 3*d33*x1^5*x2^2 – 5*d51*x1^5*x2^2 – 9*c52*x1^6*x2^2 –
7*c70*x1^6*x2^2 – 3*d43*x1^6*x2^2 – 5*d61*x1^6*x2^2 – c11*x2^3 +
c13*x2^3 – 6*d02*x2^3 + 4*d04*x2^3 – j03*x2^3 – 4*c03*x1*x2^3 –
2*c21*x1*x2^3 + 2*c23*x1*x2^3 – 6*d12*x1*x2^3 + 4*d14*x1*x2^3 –
j13*x1*x2^3 – 5*c13*x1^2*x2^3 – 3*c31*x1^2*x2^3 + 3*c33*x1^2*x2^3 –
4*d04*x1^2*x2^3 – 6*d22*x1^2*x2^3 + 4*d24*x1^2*x2^3 – j23*x1^2*x2^3 –
6*c23*x1^3*x2^3 – 4*c41*x1^3*x2^3 + 4*c43*x1^3*x2^3 – 4*d14*x1^3*x2^3 –
6*d32*x1^3*x2^3 + 4*d34*x1^3*x2^3 – 7*c33*x1^4*x2^3 – 5*c51*x1^4*x2^3 –
4*d24*x1^4*x2^3 – 6*d42*x1^4*x2^3 – 8*c43*x1^5*x2^3 – 6*c61*x1^5*x2^3 –
4*d34*x1^5*x2^3 – 6*d52*x1^5*x2^3 – c12*x2^4 + c14*x2^4 – 7*d03*x2^4 +
5*d05*x2^4 – j04*x2^4 – 4*c04*x1*x2^4 – 2*c22*x1*x2^4 + 2*c24*x1*x2^4 –
7*d13*x1*x2^4 + 5*d15*x1*x2^4 – j14*x1*x2^4 – 5*c14*x1^2*x2^4 –
3*c32*x1^2*x2^4 + 3*c34*x1^2*x2^4 – 5*d05*x1^2*x2^4 – 7*d23*x1^2*x2^4 +
5*d25*x1^2*x2^4 – 6*c24*x1^3*x2^4 – 4*c42*x1^3*x2^4 – 5*d15*x1^3*x2^4 –
7*d33*x1^3*x2^4 – 7*c34*x1^4*x2^4 – 5*c52*x1^4*x2^4 – 5*d25*x1^4*x2^4 –
7*d43*x1^4*x2^4 – c13*x2^5 + c15*x2^5 – 8*d04*x2^5 + 6*d06*x2^5 –
j05*x2^5 – 4*c05*x1*x2^5 – 2*c23*x1*x2^5 + 2*c25*x1*x2^5 –
8*d14*x1*x2^5 + 6*d16*x1*x2^5 – 5*c15*x1^2*x2^5 – 3*c33*x1^2*x2^5 –
6*d06*x1^2*x2^5 – 8*d24*x1^2*x2^5 – 6*c25*x1^3*x2^5 – 4*c43*x1^3*x2^5 –
6*d16*x1^3*x2^5 – 8*d34*x1^3*x2^5 – c14*x2^6 + c16*x2^6 – 9*d05*x2^6 +
7*d07*x2^6 – 4*c06*x1*x2^6 – 2*c24*x1*x2^6 – 9*d15*x1*x2^6 –
5*c16*x1^2*x2^6 – 3*c34*x1^2*x2^6 – 7*d07*x1^2*x2^6 – 9*d25*x1^2*x2^6 –
c15*x2^7 – 10*d06*x2^7 – 4*c07*x1*x2^7 – 2*c25*x1*x2^7 –
10*d16*x1*x2^7 – c16*x2^8 – 11*d07*x2^8

eqK2 = d10 + e01 – k00 – 4*d00*x1 + 2*d20*x1 + e11*x1 – k10*x1 – 5*d10*x1^2 +
3*d30*x1^2 – e01*x1^2 + e21*x1^2 – k20*x1^2 – 6*d20*x1^3 + 4*d40*x1^3 –
e11*x1^3 + e31*x1^3 – k30*x1^3 – 7*d30*x1^4 + 5*d50*x1^4 – e21*x1^4 +
e41*x1^4 – k40*x1^4 – 8*d40*x1^5 + 6*d60*x1^5 – e31*x1^5 + e51*x1^5 –
k50*x1^5 – 9*d50*x1^6 + 7*d70*x1^6 – e41*x1^6 + e61*x1^6 – 10*d60*x1^7 –
e51*x1^7 – 11*d70*x1^8 – e61*x1^8 + d11*x2 – 4*e00*x2 + 2*e02*x2 –
k01*x2 – 4*d01*x1*x2 + 2*d21*x1*x2 – 4*e10*x1*x2 + 2*e12*x1*x2 –
k11*x1*x2 – 5*d11*x1^2*x2 + 3*d31*x1^2*x2 – 2*e02*x1^2*x2 –
4*e20*x1^2*x2 + 2*e22*x1^2*x2 – k21*x1^2*x2 – 6*d21*x1^3*x2 +
4*d41*x1^3*x2 – 2*e12*x1^3*x2 – 4*e30*x1^3*x2 + 2*e32*x1^3*x2 –
k31*x1^3*x2 – 7*d31*x1^4*x2 + 5*d51*x1^4*x2 – 2*e22*x1^4*x2 –
4*e40*x1^4*x2 + 2*e42*x1^4*x2 – k41*x1^4*x2 – 8*d41*x1^5*x2 +
6*d61*x1^5*x2 – 2*e32*x1^5*x2 – 4*e50*x1^5*x2 + 2*e52*x1^5*x2 –
9*d51*x1^6*x2 – 2*e42*x1^6*x2 – 4*e60*x1^6*x2 – 10*d61*x1^7*x2 –
2*e52*x1^7*x2 – 4*e70*x1^7*x2 – d10*x2^2 + d12*x2^2 – 5*e01*x2^2 +
3*e03*x2^2 – k02*x2^2 – 4*d02*x1*x2^2 – 2*d20*x1*x2^2 + 2*d22*x1*x2^2 –
5*e11*x1*x2^2 + 3*e13*x1*x2^2 – k12*x1*x2^2 – 5*d12*x1^2*x2^2 –
3*d30*x1^2*x2^2 + 3*d32*x1^2*x2^2 – 3*e03*x1^2*x2^2 – 5*e21*x1^2*x2^2 +
3*e23*x1^2*x2^2 – k22*x1^2*x2^2 – 6*d22*x1^3*x2^2 – 4*d40*x1^3*x2^2 +
4*d42*x1^3*x2^2 – 3*e13*x1^3*x2^2 – 5*e31*x1^3*x2^2 + 3*e33*x1^3*x2^2 –
k32*x1^3*x2^2 – 7*d32*x1^4*x2^2 – 5*d50*x1^4*x2^2 + 5*d52*x1^4*x2^2 –
3*e23*x1^4*x2^2 – 5*e41*x1^4*x2^2 + 3*e43*x1^4*x2^2 – 8*d42*x1^5*x2^2 –
6*d60*x1^5*x2^2 – 3*e33*x1^5*x2^2 – 5*e51*x1^5*x2^2 – 9*d52*x1^6*x2^2 –
7*d70*x1^6*x2^2 – 3*e43*x1^6*x2^2 – 5*e61*x1^6*x2^2 – d11*x2^3 +
d13*x2^3 – 6*e02*x2^3 + 4*e04*x2^3 – k03*x2^3 – 4*d03*x1*x2^3 –
2*d21*x1*x2^3 + 2*d23*x1*x2^3 – 6*e12*x1*x2^3 + 4*e14*x1*x2^3 –
k13*x1*x2^3 – 5*d13*x1^2*x2^3 – 3*d31*x1^2*x2^3 + 3*d33*x1^2*x2^3 –
4*e04*x1^2*x2^3 – 6*e22*x1^2*x2^3 + 4*e24*x1^2*x2^3 – k23*x1^2*x2^3 –
6*d23*x1^3*x2^3 – 4*d41*x1^3*x2^3 + 4*d43*x1^3*x2^3 – 4*e14*x1^3*x2^3 –
6*e32*x1^3*x2^3 + 4*e34*x1^3*x2^3 – 7*d33*x1^4*x2^3 – 5*d51*x1^4*x2^3 –
4*e24*x1^4*x2^3 – 6*e42*x1^4*x2^3 – 8*d43*x1^5*x2^3 – 6*d61*x1^5*x2^3 –
4*e34*x1^5*x2^3 – 6*e52*x1^5*x2^3 – d12*x2^4 + d14*x2^4 – 7*e03*x2^4 +
5*e05*x2^4 – k04*x2^4 – 4*d04*x1*x2^4 – 2*d22*x1*x2^4 + 2*d24*x1*x2^4 –
7*e13*x1*x2^4 + 5*e15*x1*x2^4 – k14*x1*x2^4 – 5*d14*x1^2*x2^4 –
3*d32*x1^2*x2^4 + 3*d34*x1^2*x2^4 – 5*e05*x1^2*x2^4 – 7*e23*x1^2*x2^4 +
5*e25*x1^2*x2^4 – 6*d24*x1^3*x2^4 – 4*d42*x1^3*x2^4 – 5*e15*x1^3*x2^4 –
7*e33*x1^3*x2^4 – 7*d34*x1^4*x2^4 – 5*d52*x1^4*x2^4 – 5*e25*x1^4*x2^4 –
7*e43*x1^4*x2^4 – d13*x2^5 + d15*x2^5 – 8*e04*x2^5 + 6*e06*x2^5 –
k05*x2^5 – 4*d05*x1*x2^5 – 2*d23*x1*x2^5 + 2*d25*x1*x2^5 –
8*e14*x1*x2^5 + 6*e16*x1*x2^5 – 5*d15*x1^2*x2^5 – 3*d33*x1^2*x2^5 –
6*e06*x1^2*x2^5 – 8*e24*x1^2*x2^5 – 6*d25*x1^3*x2^5 – 4*d43*x1^3*x2^5 –
6*e16*x1^3*x2^5 – 8*e34*x1^3*x2^5 – d14*x2^6 + d16*x2^6 – 9*e05*x2^6 +
7*e07*x2^6 – 4*d06*x1*x2^6 – 2*d24*x1*x2^6 – 9*e15*x1*x2^6 –
5*d16*x1^2*x2^6 – 3*d34*x1^2*x2^6 – 7*e07*x1^2*x2^6 – 9*e25*x1^2*x2^6 –
d15*x2^7 – 10*e06*x2^7 – 4*d07*x1*x2^7 – 2*d25*x1*x2^7 –
10*e16*x1*x2^7 – d16*x2^8 – 11*e07*x2^8

E1 = 1 – x1^2 – x2^2

E2 = (1 – x1^2 – x2^2)^2

I11 = (1 – x1^2 – x2^2)^2*(c00 + c10*x1 + c20*x1^2 + c30*x1^3 + c40*x1^4 +
c50*x1^5 + c60*x1^6 + c70*x1^7 + c01*x2 + c11*x1*x2 + c21*x1^2*x2 +
c31*x1^3*x2 + c41*x1^4*x2 + c51*x1^5*x2 + c61*x1^6*x2 + c02*x2^2 +
c12*x1*x2^2 + c22*x1^2*x2^2 + c32*x1^3*x2^2 + c42*x1^4*x2^2 +
c52*x1^5*x2^2 + c03*x2^3 + c13*x1*x2^3 + c23*x1^2*x2^3 +
c33*x1^3*x2^3 + c43*x1^4*x2^3 + c04*x2^4 + c14*x1*x2^4 +
c24*x1^2*x2^4 + c34*x1^3*x2^4 + c05*x2^5 + c15*x1*x2^5 +
c25*x1^2*x2^5 + c06*x2^6 + c16*x1*x2^6 + c07*x2^7)

I12 = (1 – x1^2 – x2^2)^2*(d00 + d10*x1 + d20*x1^2 + d30*x1^3 + d40*x1^4 +
d50*x1^5 + d60*x1^6 + d70*x1^7 + d01*x2 + d11*x1*x2 + d21*x1^2*x2 +
d31*x1^3*x2 + d41*x1^4*x2 + d51*x1^5*x2 + d61*x1^6*x2 + d02*x2^2 +
d12*x1*x2^2 + d22*x1^2*x2^2 + d32*x1^3*x2^2 + d42*x1^4*x2^2 +
d52*x1^5*x2^2 + d03*x2^3 + d13*x1*x2^3 + d23*x1^2*x2^3 +
d33*x1^3*x2^3 + d43*x1^4*x2^3 + d04*x2^4 + d14*x1*x2^4 +
d24*x1^2*x2^4 + d34*x1^3*x2^4 + d05*x2^5 + d15*x1*x2^5 +
d25*x1^2*x2^5 + d06*x2^6 + d16*x1*x2^6 + d07*x2^7)

I21 = (1 – x1^2 – x2^2)^2*(d00 + d10*x1 + d20*x1^2 + d30*x1^3 + d40*x1^4 +
d50*x1^5 + d60*x1^6 + d70*x1^7 + d01*x2 + d11*x1*x2 + d21*x1^2*x2 +
d31*x1^3*x2 + d41*x1^4*x2 + d51*x1^5*x2 + d61*x1^6*x2 + d02*x2^2 +
d12*x1*x2^2 + d22*x1^2*x2^2 + d32*x1^3*x2^2 + d42*x1^4*x2^2 +
d52*x1^5*x2^2 + d03*x2^3 + d13*x1*x2^3 + d23*x1^2*x2^3 +
d33*x1^3*x2^3 + d43*x1^4*x2^3 + d04*x2^4 + d14*x1*x2^4 +
d24*x1^2*x2^4 + d34*x1^3*x2^4 + d05*x2^5 + d15*x1*x2^5 +
d25*x1^2*x2^5 + d06*x2^6 + d16*x1*x2^6 + d07*x2^7)

I22 = (1 – x1^2 – x2^2)^2*(e00 + e10*x1 + e20*x1^2 + e30*x1^3 + e40*x1^4 +
e50*x1^5 + e60*x1^6 + e70*x1^7 + e01*x2 + e11*x1*x2 + e21*x1^2*x2 +
e31*x1^3*x2 + e41*x1^4*x2 + e51*x1^5*x2 + e61*x1^6*x2 + e02*x2^2 +
e12*x1*x2^2 + e22*x1^2*x2^2 + e32*x1^3*x2^2 + e42*x1^4*x2^2 +
e52*x1^5*x2^2 + e03*x2^3 + e13*x1*x2^3 + e23*x1^2*x2^3 +
e33*x1^3*x2^3 + e43*x1^4*x2^3 + e04*x2^4 + e14*x1*x2^4 +
e24*x1^2*x2^4 + e34*x1^3*x2^4 + e05*x2^5 + e15*x1*x2^5 +
e25*x1^2*x2^5 + e06*x2^6 + e16*x1*x2^6 + e07*x2^7)

convo: ff34eab0-791b-48f5-9417-4ebf104ce005

Comments

Leave a Reply