#ChatGPT 011 – 56

ChatGPT

These equations appear to be related to the study of curvature and tensors. It seems that Nash and his team were working on eliminating equations that described the curvature tensor K1 and K2 in terms of the Christoffel symbols. The variable j represents the Christoffel symbol, and k represents the derivative of the Christoffel symbol. The equations involve various coefficients that correspond to different degrees of polynomials. The equations also involve terms related to integrals over the unit circle. It seems that Nash and his team were trying to find adjustments to the natural input tensor that would remain divergence-free in the presence of general curvature.

Quinn
make sure to keep track as I go please.
ChatGPT

Of course, I’m keeping track of all the notes and math you’ve posted so far.

Quinn
Here is more math from the !JohnNash research of Dec 5, 2005:

memo$92887479$ = {confirmed,that,list,agrees,as,to,cmn,dmn,emn,parts,
with,prior,older,work}

list456 = {{-7*c30 + 5*c50 – d21 + d41 – j40, -7*d30 + 5*d50 – e21 + e41 –
k40}, {-6*c21 + 4*c41 – 2*d12 – 4*d30 + 2*d32 – j31,
-6*d21 + 4*d41 – 2*e12 – 4*e30 + 2*e32 – k31},
{-5*c12 – 3*c30 + 3*c32 – 3*d03 – 5*d21 + 3*d23 – j22,
-5*d12 – 3*d30 + 3*d32 – 3*e03 – 5*e21 + 3*e23 – k22},
{-4*c03 – 2*c21 + 2*c23 – 6*d12 + 4*d14 – j13, -4*d03 – 2*d21 + 2*d23 –
6*e12 + 4*e14 – k13}, {-c12 + c14 – 7*d03 + 5*d05 – j04,
-d12 + d14 – 7*e03 + 5*e05 – k04}, {-8*c40 + 6*c60 – d31 + d51 – j50,
-8*d40 + 6*d60 – e31 + e51 – k50}, {-7*c31 + 5*c51 – 2*d22 – 4*d40 +
2*d42 – j41, -7*d31 + 5*d51 – 2*e22 – 4*e40 + 2*e42 – k41},
{-6*c22 – 4*c40 + 4*c42 – 3*d13 – 5*d31 + 3*d33 – j32,
-6*d22 – 4*d40 + 4*d42 – 3*e13 – 5*e31 + 3*e33 – k32},
{-5*c13 – 3*c31 + 3*c33 – 4*d04 – 6*d22 + 4*d24 – j23,
-5*d13 – 3*d31 + 3*d33 – 4*e04 – 6*e22 + 4*e24 – k23},
{-4*c04 – 2*c22 + 2*c24 – 7*d13 + 5*d15 – j14, -4*d04 – 2*d22 + 2*d24 –
7*e13 + 5*e15 – k14}, {-c13 + c15 – 8*d04 + 6*d06 – j05,
-d13 + d15 – 8*e04 + 6*e06 – k05}, {-9*c50 + 7*c70 – d41 + d61,
-9*d50 + 7*d70 – e41 + e61}, {-8*c41 + 6*c61 – 2*d32 – 4*d50 + 2*d52,
-8*d41 + 6*d61 – 2*e32 – 4*e50 + 2*e52},
{-7*c32 – 5*c50 + 5*c52 – 3*d23 – 5*d41 + 3*d43,
-7*d32 – 5*d50 + 5*d52 – 3*e23 – 5*e41 + 3*e43},
{-6*c23 – 4*c41 + 4*c43 – 4*d14 – 6*d32 + 4*d34,
-6*d23 – 4*d41 + 4*d43 – 4*e14 – 6*e32 + 4*e34},
{-5*c14 – 3*c32 + 3*c34 – 5*d05 – 7*d23 + 5*d25,
-5*d14 – 3*d32 + 3*d34 – 5*e05 – 7*e23 + 5*e25},
{-4*c05 – 2*c23 + 2*c25 – 8*d14 + 6*d16, -4*d05 – 2*d23 + 2*d25 –
8*e14 + 6*e16}, {-c14 + c16 – 9*d05 + 7*d07, -d14 + d16 – 9*e05 +
7*e07}}

ChatGPT

This is a list of equations related to the research of John Nash on cubic surfaces. The memo numbers indicate confirmation that the listed parts agree with prior, older work. The list includes equations with variables c, d, e, j, and k, and involves a range of coefficients and degrees, such as 30, 50, 21, 41, 40, 60, 31, 51, 32, 42, 12, 22, 23, 13, 33, 03, 43, 14, 24, 04, 34, 05, 25, 15, 35, 06, and 16.

Quinn
the next piece in the !JohnNash #Math from Dec 5, 2005 is:

eqK1 = c10 + d01 – j00 – 4*c00*x1 + 2*c20*x1 + d11*x1 – j10*x1 – 5*c10*x1^2 +
3*c30*x1^2 – d01*x1^2 + d21*x1^2 – j20*x1^2 – 6*c20*x1^3 + 4*c40*x1^3 –
d11*x1^3 + d31*x1^3 – j30*x1^3 – 7*c30*x1^4 + 5*c50*x1^4 – d21*x1^4 +
d41*x1^4 – j40*x1^4 – 8*c40*x1^5 + 6*c60*x1^5 – d31*x1^5 + d51*x1^5 –
j50*x1^5 – 9*c50*x1^6 + 7*c70*x1^6 – d41*x1^6 + d61*x1^6 – 10*c60*x1^7 –
d51*x1^7 – 11*c70*x1^8 – d61*x1^8 + c11*x2 – 4*d00*x2 + 2*d02*x2 –
j01*x2 – 4*c01*x1*x2 + 2*c21*x1*x2 – 4*d10*x1*x2 + 2*d12*x1*x2 –
j11*x1*x2 – 5*c11*x1^2*x2 + 3*c31*x1^2*x2 – 2*d02*x1^2*x2 –
4*d20*x1^2*x2 + 2*d22*x1^2*x2 – j21*x1^2*x2 – 6*c21*x1^3*x2 +
4*c41*x1^3*x2 – 2*d12*x1^3*x2 – 4*d30*x1^3*x2 + 2*d32*x1^3*x2 –
j31*x1^3*x2 – 7*c31*x1^4*x2 + 5*c51*x1^4*x2 – 2*d22*x1^4*x2 –
4*d40*x1^4*x2 + 2*d42*x1^4*x2 – j41*x1^4*x2 – 8*c41*x1^5*x2 +
6*c61*x1^5*x2 – 2*d32*x1^5*x2 – 4*d50*x1^5*x2 + 2*d52*x1^5*x2 –
9*c51*x1^6*x2 – 2*d42*x1^6*x2 – 4*d60*x1^6*x2 – 10*c61*x1^7*x2 –
2*d52*x1^7*x2 – 4*d70*x1^7*x2 – c10*x2^2 + c12*x2^2 – 5*d01*x2^2 +
3*d03*x2^2 – j02*x2^2 – 4*c02*x1*x2^2 – 2*c20*x1*x2^2 + 2*c22*x1*x2^2 –
5*d11*x1*x2^2 + 3*d13*x1*x2^2 – j12*x1*x2^2 – 5*c12*x1^2*x2^2 –
3*c30*x1^2*x2^2 + 3*c32*x1^2*x2^2 – 3*d03*x1^2*x2^2 – 5*d21*x1^2*x2^2 +
3*d23*x1^2*x2^2 – j22*x1^2*x2^2 – 6*c22*x1^3*x2^2 – 4*c40*x1^3*x2^2 +
4*c42*x1^3*x2^2 – 3*d13*x1^3*x2^2 – 5*d31*x1^3*x2^2 + 3*d33*x1^3*x2^2 –
j32*x1^3*x2^2 – 7*c32*x1^4*x2^2 – 5*c50*x1^4*x2^2 + 5*c52*x1^4*x2^2 –
3*d23*x1^4*x2^2 – 5*d41*x1^4*x2^2 + 3*d43*x1^4*x2^2 – 8*c42*x1^5*x2^2 –
6*c60*x1^5*x2^2 – 3*d33*x1^5*x2^2 – 5*d51*x1^5*x2^2 – 9*c52*x1^6*x2^2 –
7*c70*x1^6*x2^2 – 3*d43*x1^6*x2^2 – 5*d61*x1^6*x2^2 – c11*x2^3 +
c13*x2^3 – 6*d02*x2^3 + 4*d04*x2^3 – j03*x2^3 – 4*c03*x1*x2^3 –
2*c21*x1*x2^3 + 2*c23*x1*x2^3 – 6*d12*x1*x2^3 + 4*d14*x1*x2^3 –
j13*x1*x2^3 – 5*c13*x1^2*x2^3 – 3*c31*x1^2*x2^3 + 3*c33*x1^2*x2^3 –
4*d04*x1^2*x2^3 – 6*d22*x1^2*x2^3 + 4*d24*x1^2*x2^3 – j23*x1^2*x2^3 –
6*c23*x1^3*x2^3 – 4*c41*x1^3*x2^3 + 4*c43*x1^3*x2^3 – 4*d14*x1^3*x2^3 –
6*d32*x1^3*x2^3 + 4*d34*x1^3*x2^3 – 7*c33*x1^4*x2^3 – 5*c51*x1^4*x2^3 –
4*d24*x1^4*x2^3 – 6*d42*x1^4*x2^3 – 8*c43*x1^5*x2^3 – 6*c61*x1^5*x2^3 –
4*d34*x1^5*x2^3 – 6*d52*x1^5*x2^3 – c12*x2^4 + c14*x2^4 – 7*d03*x2^4 +
5*d05*x2^4 – j04*x2^4 – 4*c04*x1*x2^4 – 2*c22*x1*x2^4 + 2*c24*x1*x2^4 –
7*d13*x1*x2^4 + 5*d15*x1*x2^4 – j14*x1*x2^4 – 5*c14*x1^2*x2^4 –
3*c32*x1^2*x2^4 + 3*c34*x1^2*x2^4 – 5*d05*x1^2*x2^4 – 7*d23*x1^2*x2^4 +
5*d25*x1^2*x2^4 – 6*c24*x1^3*x2^4 – 4*c42*x1^3*x2^4 – 5*d15*x1^3*x2^4 –
7*d33*x1^3*x2^4 – 7*c34*x1^4*x2^4 – 5*c52*x1^4*x2^4 – 5*d25*x1^4*x2^4 –
7*d43*x1^4*x2^4 – c13*x2^5 + c15*x2^5 – 8*d04*x2^5 + 6*d06*x2^5 –
j05*x2^5 – 4*c05*x1*x2^5 – 2*c23*x1*x2^5 + 2*c25*x1*x2^5 –
8*d14*x1*x2^5 + 6*d16*x1*x2^5 – 5*c15*x1^2*x2^5 – 3*c33*x1^2*x2^5 –
6*d06*x1^2*x2^5 – 8*d24*x1^2*x2^5 – 6*c25*x1^3*x2^5 – 4*c43*x1^3*x2^5 –
6*d16*x1^3*x2^5 – 8*d34*x1^3*x2^5 – c14*x2^6 + c16*x2^6 – 9*d05*x2^6 +
7*d07*x2^6 – 4*c06*x1*x2^6 – 2*c24*x1*x2^6 – 9*d15*x1*x2^6 –
5*c16*x1^2*x2^6 – 3*c34*x1^2*x2^6 – 7*d07*x1^2*x2^6 – 9*d25*x1^2*x2^6 –
c15*x2^7 – 10*d06*x2^7 – 4*c07*x1*x2^7 – 2*c25*x1*x2^7 –
10*d16*x1*x2^7 – c16*x2^8 – 11*d07*x2^8

eqK2 = d10 + e01 – k00 – 4*d00*x1 + 2*d20*x1 + e11*x1 – k10*x1 – 5*d10*x1^2 +
3*d30*x1^2 – e01*x1^2 + e21*x1^2 – k20*x1^2 – 6*d20*x1^3 + 4*d40*x1^3 –
e11*x1^3 + e31*x1^3 – k30*x1^3 – 7*d30*x1^4 + 5*d50*x1^4 – e21*x1^4 +
e41*x1^4 – k40*x1^4 – 8*d40*x1^5 + 6*d60*x1^5 – e31*x1^5 + e51*x1^5 –
k50*x1^5 – 9*d50*x1^6 + 7*d70*x1^6 – e41*x1^6 + e61*x1^6 – 10*d60*x1^7 –
e51*x1^7 – 11*d70*x1^8 – e61*x1^8 + d11*x2 – 4*e00*x2 + 2*e02*x2 –
k01*x2 – 4*d01*x1*x2 + 2*d21*x1*x2 – 4*e10*x1*x2 + 2*e12*x1*x2 –
k11*x1*x2 – 5*d11*x1^2*x2 + 3*d31*x1^2*x2 – 2*e02*x1^2*x2 –
4*e20*x1^2*x2 + 2*e22*x1^2*x2 – k21*x1^2*x2 – 6*d21*x1^3*x2 +
4*d41*x1^3*x2 – 2*e12*x1^3*x2 – 4*e30*x1^3*x2 + 2*e32*x1^3*x2 –
k31*x1^3*x2 – 7*d31*x1^4*x2 + 5*d51*x1^4*x2 – 2*e22*x1^4*x2 –
4*e40*x1^4*x2 + 2*e42*x1^4*x2 – k41*x1^4*x2 – 8*d41*x1^5*x2 +
6*d61*x1^5*x2 – 2*e32*x1^5*x2 – 4*e50*x1^5*x2 + 2*e52*x1^5*x2 –
9*d51*x1^6*x2 – 2*e42*x1^6*x2 – 4*e60*x1^6*x2 – 10*d61*x1^7*x2 –
2*e52*x1^7*x2 – 4*e70*x1^7*x2 – d10*x2^2 + d12*x2^2 – 5*e01*x2^2 +
3*e03*x2^2 – k02*x2^2 – 4*d02*x1*x2^2 – 2*d20*x1*x2^2 + 2*d22*x1*x2^2 –
5*e11*x1*x2^2 + 3*e13*x1*x2^2 – k12*x1*x2^2 – 5*d12*x1^2*x2^2 –
3*d30*x1^2*x2^2 + 3*d32*x1^2*x2^2 – 3*e03*x1^2*x2^2 – 5*e21*x1^2*x2^2 +
3*e23*x1^2*x2^2 – k22*x1^2*x2^2 – 6*d22*x1^3*x2^2 – 4*d40*x1^3*x2^2 +
4*d42*x1^3*x2^2 – 3*e13*x1^3*x2^2 – 5*e31*x1^3*x2^2 + 3*e33*x1^3*x2^2 –
k32*x1^3*x2^2 – 7*d32*x1^4*x2^2 – 5*d50*x1^4*x2^2 + 5*d52*x1^4*x2^2 –
3*e23*x1^4*x2^2 – 5*e41*x1^4*x2^2 + 3*e43*x1^4*x2^2 – 8*d42*x1^5*x2^2 –
6*d60*x1^5*x2^2 – 3*e33*x1^5*x2^2 – 5*e51*x1^5*x2^2 – 9*d52*x1^6*x2^2 –
7*d70*x1^6*x2^2 – 3*e43*x1^6*x2^2 – 5*e61*x1^6*x2^2 – d11*x2^3 +
d13*x2^3 – 6*e02*x2^3 + 4*e04*x2^3 – k03*x2^3 – 4*d03*x1*x2^3 –
2*d21*x1*x2^3 + 2*d23*x1*x2^3 – 6*e12*x1*x2^3 + 4*e14*x1*x2^3 –
k13*x1*x2^3 – 5*d13*x1^2*x2^3 – 3*d31*x1^2*x2^3 + 3*d33*x1^2*x2^3 –
4*e04*x1^2*x2^3 – 6*e22*x1^2*x2^3 + 4*e24*x1^2*x2^3 – k23*x1^2*x2^3 –
6*d23*x1^3*x2^3 – 4*d41*x1^3*x2^3 + 4*d43*x1^3*x2^3 – 4*e14*x1^3*x2^3 –
6*e32*x1^3*x2^3 + 4*e34*x1^3*x2^3 – 7*d33*x1^4*x2^3 – 5*d51*x1^4*x2^3 –
4*e24*x1^4*x2^3 – 6*e42*x1^4*x2^3 – 8*d43*x1^5*x2^3 – 6*d61*x1^5*x2^3 –
4*e34*x1^5*x2^3 – 6*e52*x1^5*x2^3 – d12*x2^4 + d14*x2^4 – 7*e03*x2^4 +
5*e05*x2^4 – k04*x2^4 – 4*d04*x1*x2^4 – 2*d22*x1*x2^4 + 2*d24*x1*x2^4 –
7*e13*x1*x2^4 + 5*e15*x1*x2^4 – k14*x1*x2^4 – 5*d14*x1^2*x2^4 –
3*d32*x1^2*x2^4 + 3*d34*x1^2*x2^4 – 5*e05*x1^2*x2^4 – 7*e23*x1^2*x2^4 +
5*e25*x1^2*x2^4 – 6*d24*x1^3*x2^4 – 4*d42*x1^3*x2^4 – 5*e15*x1^3*x2^4 –
7*e33*x1^3*x2^4 – 7*d34*x1^4*x2^4 – 5*d52*x1^4*x2^4 – 5*e25*x1^4*x2^4 –
7*e43*x1^4*x2^4 – d13*x2^5 + d15*x2^5 – 8*e04*x2^5 + 6*e06*x2^5 –
k05*x2^5 – 4*d05*x1*x2^5 – 2*d23*x1*x2^5 + 2*d25*x1*x2^5 –
8*e14*x1*x2^5 + 6*e16*x1*x2^5 – 5*d15*x1^2*x2^5 – 3*d33*x1^2*x2^5 –
6*e06*x1^2*x2^5 – 8*e24*x1^2*x2^5 – 6*d25*x1^3*x2^5 – 4*d43*x1^3*x2^5 –
6*e16*x1^3*x2^5 – 8*e34*x1^3*x2^5 – d14*x2^6 + d16*x2^6 – 9*e05*x2^6 +
7*e07*x2^6 – 4*d06*x1*x2^6 – 2*d24*x1*x2^6 – 9*e15*x1*x2^6 –
5*d16*x1^2*x2^6 – 3*d34*x1^2*x2^6 – 7*e07*x1^2*x2^6 – 9*e25*x1^2*x2^6 –
d15*x2^7 – 10*e06*x2^7 – 4*d07*x1*x2^7 – 2*d25*x1*x2^7 –
10*e16*x1*x2^7 – d16*x2^8 – 11*e07*x2^8

E1 = 1 – x1^2 – x2^2

E2 = (1 – x1^2 – x2^2)^2

I11 = (1 – x1^2 – x2^2)^2*(c00 + c10*x1 + c20*x1^2 + c30*x1^3 + c40*x1^4 +
c50*x1^5 + c60*x1^6 + c70*x1^7 + c01*x2 + c11*x1*x2 + c21*x1^2*x2 +
c31*x1^3*x2 + c41*x1^4*x2 + c51*x1^5*x2 + c61*x1^6*x2 + c02*x2^2 +
c12*x1*x2^2 + c22*x1^2*x2^2 + c32*x1^3*x2^2 + c42*x1^4*x2^2 +
c52*x1^5*x2^2 + c03*x2^3 + c13*x1*x2^3 + c23*x1^2*x2^3 +
c33*x1^3*x2^3 + c43*x1^4*x2^3 + c04*x2^4 + c14*x1*x2^4 +
c24*x1^2*x2^4 + c34*x1^3*x2^4 + c05*x2^5 + c15*x1*x2^5 +
c25*x1^2*x2^5 + c06*x2^6 + c16*x1*x2^6 + c07*x2^7)

I12 = (1 – x1^2 – x2^2)^2*(d00 + d10*x1 + d20*x1^2 + d30*x1^3 + d40*x1^4 +
d50*x1^5 + d60*x1^6 + d70*x1^7 + d01*x2 + d11*x1*x2 + d21*x1^2*x2 +
d31*x1^3*x2 + d41*x1^4*x2 + d51*x1^5*x2 + d61*x1^6*x2 + d02*x2^2 +
d12*x1*x2^2 + d22*x1^2*x2^2 + d32*x1^3*x2^2 + d42*x1^4*x2^2 +
d52*x1^5*x2^2 + d03*x2^3 + d13*x1*x2^3 + d23*x1^2*x2^3 +
d33*x1^3*x2^3 + d43*x1^4*x2^3 + d04*x2^4 + d14*x1*x2^4 +
d24*x1^2*x2^4 + d34*x1^3*x2^4 + d05*x2^5 + d15*x1*x2^5 +
d25*x1^2*x2^5 + d06*x2^6 + d16*x1*x2^6 + d07*x2^7)

I21 = (1 – x1^2 – x2^2)^2*(d00 + d10*x1 + d20*x1^2 + d30*x1^3 + d40*x1^4 +
d50*x1^5 + d60*x1^6 + d70*x1^7 + d01*x2 + d11*x1*x2 + d21*x1^2*x2 +
d31*x1^3*x2 + d41*x1^4*x2 + d51*x1^5*x2 + d61*x1^6*x2 + d02*x2^2 +
d12*x1*x2^2 + d22*x1^2*x2^2 + d32*x1^3*x2^2 + d42*x1^4*x2^2 +
d52*x1^5*x2^2 + d03*x2^3 + d13*x1*x2^3 + d23*x1^2*x2^3 +
d33*x1^3*x2^3 + d43*x1^4*x2^3 + d04*x2^4 + d14*x1*x2^4 +
d24*x1^2*x2^4 + d34*x1^3*x2^4 + d05*x2^5 + d15*x1*x2^5 +
d25*x1^2*x2^5 + d06*x2^6 + d16*x1*x2^6 + d07*x2^7)

I22 = (1 – x1^2 – x2^2)^2*(e00 + e10*x1 + e20*x1^2 + e30*x1^3 + e40*x1^4 +
e50*x1^5 + e60*x1^6 + e70*x1^7 + e01*x2 + e11*x1*x2 + e21*x1^2*x2 +
e31*x1^3*x2 + e41*x1^4*x2 + e51*x1^5*x2 + e61*x1^6*x2 + e02*x2^2 +
e12*x1*x2^2 + e22*x1^2*x2^2 + e32*x1^3*x2^2 + e42*x1^4*x2^2 +
e52*x1^5*x2^2 + e03*x2^3 + e13*x1*x2^3 + e23*x1^2*x2^3 +
e33*x1^3*x2^3 + e43*x1^4*x2^3 + e04*x2^4 + e14*x1*x2^4 +
e24*x1^2*x2^4 + e34*x1^3*x2^4 + e05*x2^5 + e15*x1*x2^5 +
e25*x1^2*x2^5 + e06*x2^6 + e16*x1*x2^6 + e07*x2^7)

convo: 993d35df-bcee-4803-ac2c-e5c5076f578a

Comments

Leave a Reply